A Neural Network Model for K(λ) Retrieval and Application to Global Kpar Monitoring
نویسندگان
چکیده
Accurate estimation of diffuse attenuation coefficients in the visible wavelengths Kd(λ) from remotely sensed data is particularly challenging in global oceanic and coastal waters. The objectives of the present study are to evaluate the applicability of a semi-analytical Kd(λ) retrieval model (SAKM) and Jamet's neural network model (JNNM), and then develop a new neural network Kd(λ) retrieval model (NNKM). Based on the comparison of Kd(λ) predicted by these models with in situ measurements taken from the global oceanic and coastal waters, all of the NNKM, SAKM, and JNNM models work well in Kd(λ) retrievals, but the NNKM model works more stable and accurate than both SAKM and JNNM models. The near-infrared band-based and shortwave infrared band-based combined model is used to remove the atmospheric effects on MODIS data. The Kd(λ) data was determined from the atmospheric corrected MODIS data using the NNKM, JNNM, and SAKM models. The results show that the NNKM model produces <30% uncertainty in deriving Kd(λ) from global oceanic and coastal waters, which is 4.88-17.18% more accurate than SAKM and JNNM models. Furthermore, we employ an empirical approach to calculate Kpar from the NNKM model-derived diffuse attenuation coefficient at visible bands (443, 488, 555, and 667 nm). The results show that our model presents a satisfactory performance in deriving Kpar from the global oceanic and coastal waters with 20.2% uncertainty. The Kpar are quantified from MODIS data atmospheric correction using our model. Comparing with field measurements, our model produces ~31.0% uncertainty in deriving Kpar from Bohai Sea. Finally, the applicability of our model for general oceanographic studies is briefly illuminated by applying it to climatological monthly mean remote sensing reflectance for time ranging from July, 2002- July 2014 at the global scale. The results indicate that the high Kd(λ) and Kpar values are usually found around the coastal zones in the high latitude regions, while low Kd(λ) and Kpar values are usually found in the open oceans around the low-latitude regions. These results could improve our knowledge about the light field under waters at either the global or basin scales, and be potentially used into general circulation models to estimate the heat flux between atmosphere and ocean.
منابع مشابه
A Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملApplication of Wavelet Neural Networks for Improving of Ionospheric Tomography Reconstruction over Iran
In this paper, a new method of ionospheric tomography is developed and evaluated based on the neural networks (NN). This new method is named ITNN. In this method, wavelet neural network (WNN) with particle swarm optimization (PSO) training algorithm is used to solve some of the ionospheric tomography problems. The results of ITNN method are compared with the residual minimization training neura...
متن کاملApplication of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator
This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...
متن کاملArtificial neural network forecast application for fine particulate matter concentration using meteorological data
Most parts of the urban areas are faced with the problem of floating fine particulate matter. Therefore, it is crucial to estimate the amounts of fine particulate matter concentrations through the urban atmosphere. In this research, an artificial neural network technique was utilized to model the PM2.5 dispersion in Tehran City. Factors which are influencing the predicted value consi...
متن کاملPREDICTIVE MODELS OF THE DOMINANT PERIOD OF SITE USING ARTIFICIAL NEURAL NETWORK AND MICROTREMOR MEASUREMENTS: APPLICATION TO URMIA, IRAN
Direct drilling method and the use of microtremor studies are among the most commonly used available methods utilized to estimate dynamic parameters for a site. One of the most important parameters is the dominant period of the site whose estimation plays a pivotal role in seismic hazard mitigation. The conventional models obtained are not capable of estimating the parameters that govern the se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015